MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.





  MECÃNICA GRACELI GERAL - QTDRC.





equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   * =   /  G   /     .  /

 G  = [DR] =            .+  

+  * =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

/

  / *=  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.



ψ     [   ]    .




                                           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                             dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []


G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.


o tensor energia-momento  é aquele de um campo eletromagnético,

  / = [          ] ω       ψ      [  /   ]    .    .


   = [          ] ,     [ ψ      [  /   ]    . ]    .




 /  = [          ] ,     [ ψ      [  /   ]    . ]    .



ψ [ ψ      [  /   ]    . ]    .



ψ     [   ]    .




Na física, as equações de Maxwell no espaço-tempo curvo governam a dinâmica do campo eletromagnético no espaço-tempo curvo [1] (onde a métrica não pode ser a métrica de Minkowski) ou quando se usa um sistema , não necessariamente cartesiano, arbitrário de coordenadas. Estas equações podem ser vistas como uma generalização das equações de Maxwell, que são normalmente formuladas nas coordenadas locais[nota 1] do espaço-tempo plano. Entretanto porque a relatividade geral dita que a presença de campos eletromagnéticos (ou energia/matéria em geral) induzem curvatura do espaço-tempo, as equações de Maxwell no espaço-tempo plano devem ser vistas como uma aproximação.

Campo electromagnético

O campo electromagnético[2] é um tensor antissimétrico covariante de classe 2,[3] que pode ser definido em termos de potencial electromagnético por

/
ψ     [   ]    .

Para verificar que esta equação é invariante, podemos transformar as coordenadas (tal como descrito no tratamento clássico de tensores)

/
ψ     [   ]    .

Esta definição implica que o campo electromagnético satisfaz

/
ψ     [   ]    .

que incorpora a lei de indução de Faraday e lei de Gauss[4] para o magnetismo. Isto é demonstrado por

/
ψ     [   ]    .

Embora parece ter 64 equações em Faraday-Gauss, elas realmente reduzem-se a apenas quatro equações independentes .[5] Utilizando a antisimetria do campo electromagnético pode-se reduzir a uma identidade (0 = 0) ou tornar redundante todas as equações, com excepção para aqueles com λ, μ, ν = 1,2,3; ou 2,3,0; ou 3,0,1; ou 0,1,2.

A equação de Faraday-Gauss é por vezes escrita

/
ψ     [   ]    .

onde o ponto e vírgula indica uma derivada covariante, vírgula indica uma derivada parcial, e colchetes indicam anti-simetrização (Veja Gregorio Ricci-Curbastro).[6] A derivada covariante do campo eletromagnético é

/
ψ     [   ]    .

onde Γαβ γ é o símbolo de Christoffel que é simétrico em seus índices mais baixos.




Na física, particularmente na teoria quântica de campos, a Equação de Proca descreve o comportamento quântico de uma partícula fundamental com massa não nula e spin igual a 1 (ver bosão vetorial) num espaço de Minkowski.

A equação de Proca foi nomeada em homenagem ao físico romeno Alexandru Proca.

Definição

Dada a função de Lagrange de densidade definida por

/
ψ     [   ]    .

A equação acima pressupõe a assinatura métrica , onde  é a velocidade da luz e  é constante reduzida de Planck.

equação de Euler-Lagrange de movimento para este caso, também chamada de equação de Proca é:

/
ψ     [   ]    .




ação de Einstein–Hilbert ou ação de Hilbert na relatividade geral é uma ação que torna eficiente as equações de campo de Einstein através do princípio da mínima ação. Segundo a convenção de sinal da teoria da relatividade, esta ação pode ser escrita como:[1]

/
ψ     [   ]    .

onde  é o determinante do tensor métrico é o escalar de curvatura de Ricci, e , onde  é a constante gravitacional de Newton e  é a constante da velocidade da luz no vácuo. A integral é dada sobre o espaço-tempo.

Esta ação foi inicialmente proposta por David Hilbert em 1915.


Comments

Popular posts from this blog